G9a participates in nerve injury-induced Kcna2 downregulation in primary sensory neurons
نویسندگان
چکیده
Nerve injury-induced downregulation of voltage-gated potassium channel subunit Kcna2 in the dorsal root ganglion (DRG) is critical for DRG neuronal excitability and neuropathic pain genesis. However, how nerve injury causes this downregulation is still elusive. Euchromatic histone-lysine N-methyltransferase 2, also known as G9a, methylates histone H3 on lysine residue 9 to predominantly produce a dynamic histone dimethylation, resulting in condensed chromatin and gene transcriptional repression. We showed here that blocking nerve injury-induced increase in G9a rescued Kcna2 mRNA and protein expression in the axotomized DRG and attenuated the development of nerve injury-induced pain hypersensitivity. Mimicking this increase decreased Kcna2 mRNA and protein expression, reduced Kv current, and increased excitability in the DRG neurons and led to spinal cord central sensitization and neuropathic pain-like symptoms. G9a mRNA is co-localized with Kcna2 mRNA in the DRG neurons. These findings indicate that G9a contributes to neuropathic pain development through epigenetic silencing of Kcna2 in the axotomized DRG.
منابع مشابه
G9a inhibits CREB-triggered expression of mu opioid receptor in primary sensory neurons following peripheral nerve injury
Neuropathic pain, a distressing and debilitating disorder, is still poorly managed in clinic. Opioids, like morphine, remain the mainstay of prescribed medications in the treatment of this disorder, but their analgesic effects are highly unsatisfactory in part due to nerve injury-induced reduction of opioid receptors in the first-order sensory neurons of dorsal root ganglia. G9a is a repressor ...
متن کاملMorphological Identification of Cell Death in Dorsal Root Ganglion Neurons Following Peripheral Nerve injury and repair in adult rat
Background: Axotomy causes sensory neuronal loss. Reconnection of proximal and distal nerve ends by surgical repair improves neuronal survival. It is important to know the morphology of primary sensory neurons after the surgical repair of their peripheral processes. Methods: Animals (male Wistar rats) were exposed to models of sciatic nerve transection, direct epineurial suture repair of sciati...
متن کاملDNA methyltransferase DNMT3a contributes to neuropathic pain by repressing Kcna2 in primary afferent neurons
Nerve injury induces changes in gene transcription in dorsal root ganglion (DRG) neurons, which may contribute to nerve injury-induced neuropathic pain. DNA methylation represses gene expression. Here, we report that peripheral nerve injury increases expression of the DNA methyltransferase DNMT3a in the injured DRG neurons via the activation of the transcription factor octamer transcription fac...
متن کاملOf antisense, antibodies, K+ channels, and jejunal metabolism
This month's installment of Generally Physiological focuses on endogenous regulation of K + channels by anti-sense, K + channel targeting by anti-bodies, and the effects of gastric by pass surgery on metabolism. A decrease in the abundance of voltage dependent K + channels in dorsal root ganglion (DRG) neurons can result in enhanced excitability and aberrant firing, contributing to neu-ropathic...
متن کاملDopaminergic inhibition by G9a/Glp complex on tyrosine hydroxylase in nerve injury-induced hypersensitivity
The neural balance between facilitation and inhibition determines the final tendency of central sensitization. Nerve injury-induced hypersensitivity was considered as the results from the enhanced ascending facilitation and the diminished descending inhibition. The role of dopaminergic transmission in the descending inhibition has been well documented, but its underlying molecular mechanisms ar...
متن کامل